Dwork conjecture
WebSymmetric powers played a pivotal role in Wan's proof of Dwork's meromorphy conjecture for unit root L-functions [22, 23,24]. The Kloosterman unit root L-function is defined as follows. ... WebApr 1, 2024 · In this paper, we answer a question due to Y. André related to B. Dwork's conjecture on a specialization of the logarithmic growth of solutions of p-adic linear differential equations. Precisely ...
Dwork conjecture
Did you know?
WebMay 9, 2000 · Daqing Wan. This is the final version of ANT-0142 ("An embedding approach to Dwork's conjecture"). It reduces the higher rank case of the conjecture over a general base variety to the rank one case over the affine space. The general rank one case is completed in ANT-0235 "Rank one case of Dwork's conjecture". Both papers will … WebOct 24, 2024 · 1La conjecture de Weil. II. Inst. Hautes Etudes Sci. Publ. Math. No. 52 ... The methods of Dwork are p-adic. For Xa non-singular hypersurface in a projective space they also provided him with a cohomological interpretation of the zeros and poles, and the functional equation. They inspired the crystalline theory of Grothendieck and
WebDwork’s conjecture on unit root zeta functions By Daqing Wan* 1. Introduction In this article, we introduce a systematic new method to investigate the conjectural p-adic … Webby Dwork before the development of Etale cohomology, though his proof did not give nearly as much information. 3 Cohomology of manifolds and Grothendieck’s Dream Let’s recall how ‘ordinary’ topological Cech cohomology works, and then we’ll see why an appropriate analogue would be useful in proving the Weil conjectures.
WebNov 1, 1999 · Annals of Mathematics, 150 (1999), 867–927 arXiv:math/9911270v1 [math.NT] 1 Nov 1999 Dwork’s conjecture on unit root zeta functions By Daqing Wan* 1. Introduction In this article, we introduce a systematic new method to investigate the conjectural p-adic meromorphic continuation of Professor Bernard Dwork’s unit root zeta … WebJul 31, 2024 · The Bombieri–Dwork conjecture, also attributed to Yves André, which is given in more than one version, postulates a converse direction: solutions as G-functions, or p-curvature nilpotent mod p for almost all primes p, means an equation "arises from geometry". See also. Mirror symmetry conjecture; Mixed Hodge module; Meromorphic …
WebWhether or not I succeeded in doing so - or producing anything novel in the process - I cannot say for sure (probably not), but if it'd be helpful here is a copy: On a Theorem of …
WebIn algebraic geometry, a Dwork family is a one-parameter family of hypersurfaces depending on an integer n, studied by Bernard Dwork.Originally considered by Dwork in … incompatibility\\u0027s 01WebDwork's conjecture on unit root zeta functions By DAQING WAN* 1. Introduction In this article, we introduce a systematic new method to investigate the conjectural p-adic … incompatibility\\u0027s 03WebLes conjectures de Weil ont largement influencé les géomètres algébristes depuis 1950 ; elles seront prouvées par Bernard Dwork, Alexandre Grothendieck (qui, pour s'y attaquer, mit sur pied un gigantesque programme visant à transférer les techniques de topologie algébrique en théorie des nombres), Michael Artin et enfin Pierre Deligne ... incompatibility 化学WebAbstract. The Bombieri-Dwork conjecture predicts that the differential equations satisfied by $G$-functions come from geometry. In this paper, we will look at special ... incompatibility แปลว่าWebDeligne's proof of the last of the Weil conjectures is well-known and just part of a huge body of work that has lead to prizes, medals etc (wink wink). The other conjectures were proved by Dwork and Grothendieck. According to Wikipedia, Deligne gave a second proof, and then mentions three more proofs. However, it is unclear from what I read as ... inches spiceWebDe Branges's theorem. Dinitz conjecture. Dodecahedral conjecture. Double bubble theorem. Duffin–Schaeffer conjecture. Dwork conjecture. Dwork conjecture on unit root zeta functions. Dyson conjecture. incompatibility with lifeWebOct 10, 2015 · In 1949 Weil wrote a ground-breaking article introducing his celebrated conjectures on zeta functions for algebraic varieties of arbitrary dimension, … incompatibility\\u0027s 04